
PAPER IDENTIFICATION NUMBER: 3

1

Exploring Covert Channel in Android Platform
Wade Gasior

University of Tennessee at Chattanooga
Chattanooga, TN USA

Li Yang
University of Tennessee at Chattanooga

Chattanooga, TN USA

Abstract — Network covert channels are used to exfiltrate
information from a secured environment in a way that is
extremely difficult to detect or prevent. These secret channels
have been identified as an important security threat to
governments and the private sector, and several research efforts
have focused on the design, detection, and prevention of such
channels in enterprise-type environments.

Mobile devices have become a ubiquitous computing platform,
and are storing or have access to an increasingly large amount of
sensitive information. As such, these devices have become prime
targets of attackers who desire access to this information. We
explore the implementation of network covert channels on the
Google Android mobile platform. Our work shows that covert
communication channels can be successfully implemented on the
Android platform to allow data to be leaked from these devices in
a covert manner.

Index Terms—security, covert channel, mobile, Android

I. INTRODUCTION

HE Android platform accounts for just under 50% of
the worldwide smart phone market [1] and combined with

its open application market policy, is a prime target for
malicious applications that steal users’ data. Mobile platforms
currently have only limited implementations of firewalls,
intrusion detection systems, and other network security
features, but this is likely to change as the information value
that these devices hold increases.

Gaining a better understanding and developing improved
methods of network covert channel prevention and detection
are vital to the information security efforts in both private and
government sectors, and have been the focus of much research
in the past years. It is important to explore covert channel in
mobile platforms to develop proactive protection and
prevention mechanisms.

II. BACKGROUND AND RELATED WORK

A. Purpose of Covert Channels

Covert channels can be described using the analogy of two
prisoners attempting to escape. Simmons proposed this
"prisoner problem" in 1983, which is the standard model used
when describing covert channel communication [2]. The
model describes two individuals, Alice and Bob, who are
imprisoned and intend to escape. The two prisoners are
allowed to speak with one another, but a third party (Wendy
the Warden) monitors all communication between the two. In
order to coordinate an escape plan, Alice and Bob must
communicate with one another in a manner that does not alert
Wendy, who will place the two in solitary confinement the
moment she detects anything suspicious, making the escape
impossible. In order to not be detected by Wendy, Alice and

Bob must communicate messages that appear innocent, but
contain hidden information that Wendy will not notice.

The primary goal of a covert channel is to hide the fact that
communication is taking place at all. Covert channels differ
from cryptography, where the primary goal is to transfer data
that is only readable by the receiver [3] rather than hide the
existence of communication. Covert Channels are similar to
steganography, where a secret message is hidden or embedded
within legitimate data, but are differentiated by the techniques
used to hide the secret message. For example, a steganography
approach might be to embed a secret message in the unused
header fields of a TCP/IP packet, whereas a covert channel
approach would be to encode the secret message by altering
the delays between the TCP/IP packets.

Covert channels are desirable to exfiltrate sensitive
information for several reasons. One, the use of a normal
communications channel (such as an FTP or HTTP
connection) is easily detected by wardens looking for
malicious traffic. This type of traffic can be captured in log
files and traffic dumps, and then analyzed and prevented.
Making the communication channel more obscure, by
methods such as using nonstandard port numbers, is also
easily detectable and would trigger mechanisms such as
packet anomaly detection systems [3].

Our goal in this work is to show that communication
channels between an Android device and a remote server can
be implemented in ways that are undetectable by network
wardens.

B. Types and Classifications of Covert Channels

Covert channels can be employed in a number of scenarios
where data needs to be transferred undetected. For example,
imagine that an attacker has compromised a system within a
secure computing environment, such as a financial institution
or military base, and gained access to sensitive information.
These types of environments employ a variety of network
security features such as firewalls and intrusion detection
systems to detect and prevent the leak of such sensitive data to
outside networks or systems. The challenge for the attacker is
to exfiltrate this data to an unsecure location without being
detected, and covert channels provide a means to do so.

 Network covert channels can, in a broad sense, be classified
as either storage-based (Figure 1) or timing-based (Figure 2),
but the distinction between the two is quite blurred. Storage-
based covert channels, or covert storage channels (CSC),
operate by altering the content of some resource that can be
observed by a receiver [4]. Cabuk describes the
implementation of a simple binary CSC in [4]. This channel
operates using a timeline divided into intervals of size ,
known by both the sender and receiver. The sender transmits a
bit value of by maintaining silence throughout a given
interval, and transmits a bit value of by sending a packet or

T

PAPER IDENTIFICATION NUMBER: 3

2

becoming active during a given interval. Timing-based covert
channels, or covert timing channels (CTC), operate by altering
the delays between network events, such as the sending of a
packet. Berk implemented one of the earlier examples of a
network covert timing channel by encoding a message using
interpacket delays [3]. This channel operates using a set of
time intervals . Each time interval is associated
with a symbol from the input alphabet, and the delay between
consecutive packets (interpacket delay) is altered to transmit a
given symbol.

Figure 1 Storage Covert Channel

Figure 2 Timing Covert Channels

Network covert channels have been implemented in a
number of ways, all designed with the goals of resistance to
detection and increased capacity versus the basic timing and
storage implementations described above. The technique of
implementing a covert storage channel using packet rate
modulation, discussed in [5], encodes information by
establishing a time interval and transmitting data during a
given interval at a rate representing a specific input symbol

. This results in a more robust covert storage channel
compared to the basic implementation discussed in section
2.4. In a simple binary scenario, a sender could encode a
binary by transmitting at a rate for a period of length , or
a binary by transmitting a rate for a period of length .
The technique of implementing a covert timing channel by
replaying interpacket delays observed in legitimate traffic is
discussed in [6]. The technique uses a sample of interpacket
delays observed from legitimate traffic () partitioned into
two equal bins and . To transmit a binary , a random
interpacket delay from is transmitted. To transmit a binary

, a random interpacket delay from is transmitted. Model-
based covert timing channels, discussed in [7] and [8], are
implemented in a manner that mimics the statistical properties
of legitimate traffic, making them very difficult to detect.
Model-based CTC’s are implemented in four phases. The first
phase observes and records the interpacket delays of
legitimate traffic. The second phase analyzes the traffic to
determine the best distribution model (Exponential, Gamma,
Pareto, Lognormal, Poisson, Weibull, etc.) by using root mean
squared error and maximum likelihood estimation. Once a
model has been chosen, the third and final phase determines
the appropriate interpacket delay times to be used for the
covert channel using the inverse distribution function of the
selected model and encodes the channel. Decoding by the
receiver is performed using the cumulative distribution
function. A transmission control protocol (TCP) databurst is
the number of TCP segments sent by a host before waiting for

a TCP ACK packet. Luo, in [9] discusses the technique of
implementing a covert storage channel by altering the size of
these databursts.

III. IMPLEMENTATION OF NETWORK COVERT CHANNELS ON

THE ANDROID PLATFORM

To evaluate covert channels on the Android platform, we
designed two implementations that stealthily transmit data
from the phone to a remote server: a timing-based covert
channel and a storage-based covert channel. Our timing-based
CC is encoded using delays between network events, while
our storage-based CC is encoded based on the ordering of
network events. Both implementations involve embedding a
covert channel in an innocuous appearing application.

A. Timing-CC Implementation Overview

In order to implement a timing-based channel on the Android
platform, we required an application that would generate a
large amount of legitimate traffic at a steady rate in order to
make the embedding of a covert timing channel effective. To
accomplish this, we developed an application that transmits
live video from the camera on the Android device to a remote
server (presumably controlled by the attacker). In a real-world
implementation, this server could then broadcast the video
over the Internet similar to other applications such as
Justin.TV®. The application essentially allows the phone to
operate as an IP camera, and gives us plenty of overt traffic in
which to embed a covert channel. The protocol we designed
for this application sends one video frame per TCP message.
The first four-byte segment of each TCP payload contains an
integer with the size in bytes of the image payload.

In order to implement our covert channel, we alter the
delays between sequential TCP messages. Delays are
introduced between TCP messages on the Android device by
using calls to the sleep method in the Android SystemClock
library between TCP message transmissions. Our network
covert timing channel uses binary encoding to transmit
messages. In order for the covert channel to signal to the
server that it is ready to begin transmission, it transmits the
sequence of binary symbols 0-1-0-1-1-0-1-1 (Ascii code for
'['). To signify the end of a transmission, the application
simply stops transmitting any input symbols that represent a
binary 1.

The server-side of this application displays video streamed
from the mobile device while capturing and recording the
delays between received messages. Delays on the server-side
are calculated by measuring the time between receipts of
complete TCP messages. This is done by using calls to the
nanoTime method in the Java System library. If a delay is
above a certain threshold value, the observed delay is treated
as a binary 1. Otherwise, it is treated as a binary 0. The
application reconstructs the transmitted covert message and
displays it in plain text as it is received.

B. Storage-CC Implementation Overview

To implement a storage-based covert channel, we designed
an application that displays a small advertisement banner at
the bottom of an arbitrary application. The advertisements are

PAPER IDENTIFICATION NUMBER: 3

3

fetched from our remote server, of which there are choices
of advertisements.

The application leaks information by requesting a specific
advertisement to represent a specific encoded input token
(binary values of the contacts list). If advertisements are
available, then each request can represent bits of the data to
be transmitted. The application fetches advertisements using
HTTP requests with a POST parameter representing the
specific ad to be fetched.

Specific advertisements represent the beginning or end of a
covert transmission. The server-side of this application
responds to HTTP requests with the appropriate ad, and
records the sequence in which ads are requested during a
covert transmission. The application displays covert data in
plain text as it is received by decoding the message based on
the order of advertisement banners requested.

C. Implementation Challenges

Several challenges were faced during our research and
development of covert channels on the Android platform. A
challenge we faced during our research was that of accessing
the targeted sensitive data on the Android device. The
Android operating system uses fine-grained per-application
permissions that the user must approve at install time (e.g.
permission to access the network and permission to access the
contacts list). Applications that have both network access and
access to sensitive data such as the contacts list raise
suspicions from the user who must approve these permissions,
and from security software that identifies over-privileged
applications [11]. Exasperating this problem is the fact that
applications on the Android platform are executed in isolated
runtime environments. The Android operating system is a
Linux-based OS where each application is run as a distinct
user and group, which creates a sandboxed environment that
separates each application from one another and from the
underlying system. This prevents using the approach of
dividing the attack into two separate applications - one for the
data access and one for the network connectivity - because
communication between the two is not possible.

A second challenge faced during our research involved the
network implementation of our covert channels. The Android
platform (and the Java programming language in general
without accessing native libraries) does not allow an
application to have access to raw sockets, so techniques used
in traditional computing environments that alter the flow of
packets in order to implement covert channels [3, 5, 6, 10] are
not possible. Network programming on Android is limited to
high-level socket communications (transport layer), and does
not provide the ability for programmers to access lower levels
of the network stack. The presence of low level socket access
would represent a major security risk, as these types of
operations require root access on the device.
 A third challenge faced during our research was the
difficulty of implementing our timing-based covert channel
over the cellular network. The mobile phone network
introduced a large amount of jitter and highly varying quality
that caused synchronization and reliability issues in our
implementation. We also discovered that very few UDP

packets complete the trip from source to destination without
being dropped.

D. Solutions of Challenges

To overcome the challenge of accessing sensitive data on the
Android platform, we relied on the method of on-device
covert storage channels discussed by Schlegel et al. [11].
Schlegel showed that the protection mechanisms on the
Android platform that prevent unauthorized application-to-
application communication can be subverted. The
implementation puts in place malware in the form of two
cooperating applications: one with permission to access
sensitive data, and the other with network access. On-device
covert channels were used to communicate data between the
two applications. These channels rely primarily on changing a
global setting that both applications had access to, such as the
device's volume or screen brightness.

Based on Schlegel's findings, we assume that our covert
channel applications have access to the desired sensitive data
on the target device while also having full network access, as
would be the case for a real-world application. To overcome
the challenge of the lack of low level socket access, we
implemented custom TCP and UDP protocols to carry our
legitimate application traffic. We encode a covert timing
channel within the legitimate channel by altering the delays
between protocol messages. We insert enough of a delay
between protocol messages that the TCP stream is flushed
between each message. We also disable TCP's Nagle
algorithm, a congestion control technique used by TCP to
combine multiple messages into a single packet to reduce the
number of packets sent over the network. This allows us to
have finer grained control over the timing of TCP messages.
 The traffic quality challenges presented by the cellular
network have forced us to use the TCP protocol only, since
UDP traffic often does not make it through the network. We
also used higher values for inter-message delays than would
be necessary if access to raw sockets existed. This resulted in
a lower bandwidth covert channel than one would normally be
able to implement.

E. Experimental Setup

For our mobile platform, we used a Motorola Droid X
Smartphone. This platform was chosen because it is a fairly
common smartphone, with widespread use in the real-world.
The Droid X phone is powered by a 1GHz Texas Instruments
Open Multimedia Application Platform (OMAP) 3630
processor chip, which uses an ARM Cortex-A8 processing
unit. The unit has 512MB of random access memory (RAM).
The Droid X used during our experiments was running
Android version 2.3.3 (codenamed Gingerbread) as its
operating system. This was the most current operating system
for this device as of the time of our research. For our
experiments, all other running processes on the phone were
killed other than our covert channel application and required
system processes.

For our server platform, which served as the
communications endpoint for both overt and covert traffic
generated by our applications, we used a system powered by
an Intel Core i7 processor with 12GB of RAM running

PAPER IDENTIFICATION NUMBER: 3

4

Windows 7 64-bit. The Droid X used during our experiments
was connected to the Internet via Verizon's 3G service in
Chattanooga, TN. Verizon's network type in this location is a
Code Division Multiple Access (CDMA) Evolution-Data
Optimized (EV-DO) revision A network. Our typical signal
strength during testing was -69 dBm, and all tests were
performed from the same location. As a reference, signal
strength of -60 dBm represents a nearly perfect connection,
while signal strength of -112 dBm represents a nearly
unusable connection.

We performed several tests to establish a measure of
network quality. We used the SpeedTest.net Android
application by OOKLA in order to get a general idea of the
quality of the Droid X’s Internet connection. This application
tests the uplink and downlink speed to a geographically close
server. We used the application to test connectivity to a server
in McMinnville, TN hosted by Ben Lomand Telephone
Systems. We performed multiple tests on weekday evenings
(approximately 7:00pm local time) to capture network
conditions during a time of relatively heavy network load. The
speed tests provided fairly consistent results: approximately
2.0 Mbps downlink speed; approximately 0.7 Mbps uplink
speed; and a ping time of approximately 200 ms.

For our covert timing channel, we implemented a basic
binary channel (two input symbols: binary 0 and binary 1).
We designed two Android applications: a testing application
that implements a covert channel without any overt traffic,
and a real-world application that embeds a covert channel
within overt traffic. The first was designed only for the
purpose of determining baseline measurements of the network
factors that would affect our covert channel, such as the
correlation between transmitted symbols and observed
symbols, the jitter introduced by the cellular network, and the
max throughput capable for a binary channel. The channel is
implemented by encoding covert traffic using delays between
1-byte TCP messages.

In order to establish baseline measurements of jitter, input
to output symbol accuracy, and max throughput, we used our
implementation that produces only covert traffic (no overt
traffic) to perform experiments to test these factors. To test
jitter and input to output symbol accuracy, we used the
application to transmit several various input symbols (various
delays between TCP messages) 350 times each, and measured
the observed symbol (observed delay) at the server end. These
tests were all performed under similar network conditions.
The goal of this experiment was to find a suitable input
symbol to represent the long delay in our binary input
alphabet (the short delay is represented by transmitting
messages with no delay).
Next, to test channel throughput and accuracy, we transmitted
a short message ("wadegasior@gmail.com") encoded in
binary multiple times using various delays and measured the
rate and accuracy of the message being received at the server-
side. When transmitting string messages using our covert
timing channel, each character of the string is transmitted
using eight bits represented by the character's binary ASCII
value.

We then performed similar experiments using the second
application, which embeds a covert channel within an overt
video stream. These experiments were performed to determine
the amount of jitter caused by the additional overt traffic on
our covert channel, the accuracy of our covert channel in a
real-world scenario, and the maximum bandwidth of our
covert channel in a real-world scenario.

Our covert storage channel is implemented using
advertisement banners fetched from our server and displayed
within the application on the Android device. We
experimented with various input-output alphabets (number of
advertisements available to fetch) and various delays between
fetches to determine the throughput of this covert channel
implementation. The size of the input-output alphabet
determines the amount of information that can be transmitted
with each advertisement request. In order to transmit bits
with each request, advertisement banners must be available
to fetch. The delay between advertisement banner fetches is
governed by what a typical user would expect as a normal rate
at which an advertisement banner would be updated. For
example, if our embedded advertisement banner updates once
every three seconds, it would be a telltale sign that suspicious
activity is going on.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Our first experiment uses a covert timing channel with no
overt traffic overhead. We transmitted the delays listed in
Table 1 350 times each, and analyzed the accuracy at which
these delays were observed by our server. Our goal was to
find the smallest input symbol (smallest inter-message delay
value) that could be clearly distinguished from an input
symbol of 0 ms.

TABLE I
INPUT DELAYS TRANSMITTED DURING BASELINE COVERT TIMING CHANNEL

Delay (ms)
0
25
50
75

100
150
200

First, we transmitted TCP messages with an inter-message
delay of 0 ms (no delay). The delays observed at the server-
side showed a saw tooth pattern, where delays alternated
between relatively high values (80 to 100 ms) and a value of 0
ms. Measurements for the first twenty observed delays are
shown in Figure 3.

Figure 3 Output Symbols Observed with Input Symbol of 0 ms

(First 20 Observed Delays)

PAPER IDENTIFICATION NUMBER: 3

5

The observed saw tooth pattern can be attributed to the
delayed ACK feature present in the TCP protocol. TCP does
not immediately respond to every received TCP packet with
an ACK. TCP waits for a period, expecting that an application
response might be sent, and the ACK can be included in the
response to save bandwidth. If a second TCP packet is
received during this waiting period, TCP immediately
responds with an ACK. Because our testing application was
transmitting TCP messages consisting only of a single packet,
the server waited to respond with an ACK after every other
packet causing this result. We verified this behavior by
analyzing the traffic with Wireshark. Our Android application
sends two packets, and then waits until it receives an ACK
before sending more, and thus every other delay is a high
value. Taking this into consideration, we redesigned our
server application by having it respond to every TCP message
received with a short response. This effectively sends an
immediate ACK for every message received. Repeating the
experiment with this change yielded the observed values
shown in Figure 4, again for the first twenty delays observed.

Figure 4 Output Symbols Observed with Input Symbol of 0 ms,
with forced ACK after each message (First 20 Observed Delays)

With this modification, we were able to obtain a much more

consistent input symbol to output symbol relationship. For our
sample size of 350 delays, we observed a mean delay of 88
ms, a range from 60 to 127 ms, and a standard deviation
(jitter) of 10 ms. A frequency of observed symbols is shown
in Figure 5.

Figure 5 Output Symbols Observed by Server with Input Symbol of 0 ms

(350 samples)

After determining possible input symbol values for
representing a binary 1 for our covert channel, we tested the
accuracy and overall throughput of channels implemented
using these input symbols. Again, these channels were
implemented without the overhead of overt traffic. For each
combination of input values, a threshold value was selected
based on the results of the previous experiments. If a delay is
observed below the threshold value, it is treated as a binary 0.
If a delay is observed that is greater than the threshold value,
it is treated as a binary 1.

For each combination of input and threshold value, we
measured the accuracy and throughput of a covert channel by

transmitting the string value "wadegasior@gmail.com"
encoded to 7-bit ASCII. The results are shown in Table II.
Each combination was tested five times, and the average
accuracy and throughput recorded.

TABLE II
BASELINE ACCURACY AND THROUGHPUT EXPERIMENT RESULTS
Input

Symbol for
Binary 0

(ms)

Input
Symbol

for
Binary
1 (ms)

Threshold
Value
(ms)

Throughput
(bps)

Accuracy
(%)

0 100 95 9.3 81.7
0 150 110 7.8 99.2
0 200 130 7.2 100

These results demonstrated an expected correlation between

delay length, accuracy and throughput. Using larger delays for
the binary 1 input symbol (with a larger associated threshold
value) results in more accurate transmissions at the cost of
throughput.

IV. CONCLUSION

In this work, we implemented network covert channels on
mobile devices that allow data to be leaked from the device
via its network connection in a manner that is very difficult to
detect. We proved this by implementing both timing-based
and storage-based network covert channels on an Android-
powered smartphone, and using these channels to covertly
transfer information from the phone to an external server.

REFERENCES

[1] B. Reed (2011, Aug. 1). Android market share nears 50% worldwide
[Online]. Available: http://www.networkworld.com/news/2011/080111-
canalys.html

[2] G. J. Simmons, “The prisoners’ problem and the subliminal channel,” in
Advances in Cryptology: Proceedings of Crypto '83, pp. 51-67, Plenum
Press, 1984.

[3] V. Berk, A. Giani, and G. Cybenko, “Detection of Covert Channel
Encoding in Network Packet Delays,” Tech. Rep. TR2005-536,
Dartmouth College, Computer Science, Hanover, NH, August 2005.

[4] S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert channel detection,”
ACM Trans. Inf. Syst. Secur., vol. 12, pp. 22:1-22:29, April 2009.

[5] S. Zander, G. Armitage, and P. Branch, “A survey of covert channels
and countermeasures in computer network protocols,” Communications
Surveys Tutorials, IEEE, vol. 9, pp. 44 -57, 2007.

[6] S. Cabuk. Network Covert Channels: Design, Analysis, Detection, and
Elimination. PhD thesis, Purdue University, 2006.

[7] S. Gianvecchio, H. Wang, D. Wijesekera, and S. Jajodia, “Model-based
covert timing channels: Automated modeling and evasion,” in
Proceedings of the 11th international symposium on Recent Advances in
Intrusion Detection, RAID ’08, (Berlin, Heidelberg), pp. 211-230,
Springer-Verlag, 2008.

[8] S. H. Sellke, C.-C.Wang, S. Bagchi, and N. B. Shroff, “Tcp/ip timing
channels: Theory to implementation.,” in INFOCOM, pp. 2204-2212,
IEEE, 2009.

[9] X. Luo, E. Chan, and R. Chang, “Tcp covert timing channels: Design
and detection.,” in DSN, pp. 420-429, IEEE Computer Society, 2008.

[10] S. Gianvecchio and H. Wang, “An entropy-based approach to detecting
covert timing channels,” IEEE Transactions on Dependable and Secure
Computing, vol. 99, 2010.

[11] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang.
Soundcomber: A Stealthy and Context-Aware Sound Trojan for
Smartphones. In Proceedings of the 18th Annual Network and
Distributed System Security Symposium, NDSS '11, pages 17-33, 2011.

