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Abstract — Network covert channels are used to exfiltrate 
information from a secured environment in a way that is 
extremely difficult to detect or prevent. These secret channels 
have been identified as an important security threat to 
governments and the private sector, and several research efforts 
have focused on the design, detection, and prevention of such 
channels in enterprise-type environments. 

Mobile devices have become a ubiquitous computing platform, 
and are storing or have access to an increasingly large amount of 
sensitive information. As such, these devices have become prime 
targets of attackers who desire access to this information. We 
explore the implementation of network covert channels on the 
Google Android mobile platform. Our work shows that covert 
communication channels can be successfully implemented on the 
Android platform to allow data to be leaked from these devices in 
a covert manner.  
 

Index Terms—security, covert channel, mobile, Android  

I. INTRODUCTION 

HE Android platform accounts for just under 50% of 
the worldwide smart phone market [1] and combined with 

its open application market policy, is a prime target for 
malicious applications that steal users’ data. Mobile platforms 
currently have only limited implementations of firewalls, 
intrusion detection systems, and other network security 
features, but this is likely to change as the information value 
that these devices hold increases. 

Gaining a better understanding and developing improved 
methods of network covert channel prevention and detection 
are vital to the information security efforts in both private and 
government sectors, and have been the focus of much research 
in the past years. It is important to explore covert channel in 
mobile platforms to develop proactive protection and 
prevention mechanisms. 

II. BACKGROUND AND RELATED WORK  

A. Purpose of Covert Channels 

Covert channels can be described using the analogy of two 
prisoners attempting to escape. Simmons proposed this 
"prisoner problem" in 1983, which is the standard model used 
when describing covert channel communication [2]. The 
model describes two individuals, Alice and Bob, who are 
imprisoned and intend to escape. The two prisoners are 
allowed to speak with one another, but a third party (Wendy 
the Warden) monitors all communication between the two. In 
order to coordinate an escape plan, Alice and Bob must 
communicate with one another in a manner that does not alert 
Wendy, who will place the two in solitary confinement the 
moment she detects anything suspicious, making the escape 
impossible. In order to not be detected by Wendy, Alice and 

Bob must communicate messages that appear innocent, but 
contain hidden information that Wendy will not notice. 

The primary goal of a covert channel is to hide the fact that 
communication is taking place at all. Covert channels differ 
from cryptography, where the primary goal is to transfer data 
that is only readable by the receiver [3] rather than hide the 
existence of communication. Covert Channels are similar to 
steganography, where a secret message is hidden or embedded 
within legitimate data, but are differentiated by the techniques 
used to hide the secret message. For example, a steganography 
approach might be to embed a secret message in the unused 
header fields of a TCP/IP packet, whereas a covert channel 
approach would be to encode the secret message by altering 
the delays between the TCP/IP packets. 

Covert channels are desirable to exfiltrate sensitive 
information for several reasons. One, the use of a normal 
communications channel (such as an FTP or HTTP 
connection) is easily detected by wardens looking for 
malicious traffic. This type of traffic can be captured in log 
files and traffic dumps, and then analyzed and prevented. 
Making the communication channel more obscure, by 
methods such as using nonstandard port numbers, is also 
easily detectable and would trigger mechanisms such as 
packet anomaly detection systems [3]. 

Our goal in this work is to show that communication 
channels between an Android device and a remote server can 
be implemented in ways that are undetectable by network 
wardens. 

B. Types and Classifications of Covert Channels 

Covert channels can be employed in a number of scenarios 
where data needs to be transferred undetected. For example, 
imagine that an attacker has compromised a system within a 
secure computing environment, such as a financial institution 
or military base, and gained access to sensitive information. 
These types of environments employ a variety of network 
security features such as firewalls and intrusion detection 
systems to detect and prevent the leak of such sensitive data to 
outside networks or systems. The challenge for the attacker is 
to exfiltrate this data to an unsecure location without being 
detected, and covert channels provide a means to do so. 

 Network covert channels can, in a broad sense, be classified 
as either storage-based (Figure 1) or timing-based (Figure 2), 
but the distinction between the two is quite blurred. Storage-
based covert channels, or covert storage channels (CSC), 
operate by altering the content of some resource that can be 
observed by a receiver [4]. Cabuk describes the 
implementation of a simple binary CSC in [4]. This channel 
operates using a timeline divided into intervals of size , 
known by both the sender and receiver. The sender transmits a 
bit value of  by maintaining silence throughout a given 
interval, and transmits a bit value of  by sending a packet or 
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becoming active during a given interval. Timing-based covert 
channels, or covert timing channels (CTC), operate by altering 
the delays between network events, such as the sending of a 
packet. Berk implemented one of the earlier examples of a 
network covert timing channel by encoding a message using 
interpacket delays [3]. This channel operates using a set of 
time intervals . Each time interval is associated 
with a symbol from the input alphabet, and the delay between 
consecutive packets (interpacket delay) is altered to transmit a 
given symbol. 

 
Figure 1 Storage Covert Channel 

 
  

 
Figure 2 Timing Covert Channels 

Network covert channels have been implemented in a 
number of ways, all designed with the goals of resistance to 
detection and increased capacity versus the basic timing and 
storage implementations described above. The technique of 
implementing a covert storage channel using packet rate 
modulation, discussed in [5], encodes information by 
establishing a time interval  and transmitting data during a 
given interval  at a rate representing a specific input symbol 

. This results in a more robust covert storage channel 
compared to the basic implementation discussed in section 
2.4. In a simple binary scenario, a sender could encode a 
binary  by transmitting at a rate  for a period of length , or 
a binary  by transmitting a rate  for a period of length . 
The technique of implementing a covert timing channel by 
replaying interpacket delays observed in legitimate traffic is 
discussed in [6]. The technique uses a sample of interpacket 
delays observed from legitimate traffic ( ) partitioned into 
two equal bins  and . To transmit a binary , a random 
interpacket delay from  is transmitted. To transmit a binary 

, a random interpacket delay from  is transmitted. Model-
based covert timing channels, discussed in [7] and [8], are 
implemented in a manner that mimics the statistical properties 
of legitimate traffic, making them very difficult to detect. 
Model-based CTC’s are implemented in four phases. The first 
phase observes and records the interpacket delays of 
legitimate traffic. The second phase analyzes the traffic to 
determine the best distribution model (Exponential, Gamma, 
Pareto, Lognormal, Poisson, Weibull, etc.) by using root mean 
squared error and maximum likelihood estimation. Once a 
model has been chosen, the third and final phase determines 
the appropriate interpacket delay times to be used for the 
covert channel using the inverse distribution function of the 
selected model and encodes the channel. Decoding by the 
receiver is performed using the cumulative distribution 
function. A transmission control protocol (TCP) databurst is 
the number of TCP segments sent by a host before waiting for 

a TCP ACK packet. Luo, in [9] discusses the technique of 
implementing a covert storage channel by altering the size of 
these databursts. 

III. IMPLEMENTATION OF NETWORK COVERT CHANNELS ON 

THE ANDROID PLATFORM 

To evaluate covert channels on the Android platform, we 
designed two implementations that stealthily transmit data 
from the phone to a remote server: a timing-based covert 
channel and a storage-based covert channel. Our timing-based 
CC is encoded using delays between network events, while 
our storage-based CC is encoded based on the ordering of 
network events. Both implementations involve embedding a 
covert channel in an innocuous appearing application. 

A. Timing-CC Implementation Overview 

In order to implement a timing-based channel on the Android 
platform, we required an application that would generate a 
large amount of legitimate traffic at a steady rate in order to 
make the embedding of a covert timing channel effective. To 
accomplish this, we developed an application that transmits 
live video from the camera on the Android device to a remote 
server (presumably controlled by the attacker). In a real-world 
implementation, this server could then broadcast the video 
over the Internet similar to other applications such as 
Justin.TV®. The application essentially allows the phone to 
operate as an IP camera, and gives us plenty of overt traffic in 
which to embed a covert channel. The protocol we designed 
for this application sends one video frame per TCP message. 
The first four-byte segment of each TCP payload contains an 
integer with the size in bytes of the image payload. 

In order to implement our covert channel, we alter the 
delays between sequential TCP messages. Delays are 
introduced between TCP messages on the Android device by 
using calls to the sleep method in the Android SystemClock 
library between TCP message transmissions. Our network 
covert timing channel uses binary encoding to transmit 
messages. In order for the covert channel to signal to the 
server that it is ready to begin transmission, it transmits the 
sequence of binary symbols 0-1-0-1-1-0-1-1 (Ascii code for 
'['). To signify the end of a transmission, the application 
simply stops transmitting any input symbols that represent a 
binary 1. 

The server-side of this application displays video streamed 
from the mobile device while capturing and recording the 
delays between received messages. Delays on the server-side 
are calculated by measuring the time between receipts of 
complete TCP messages. This is done by using calls to the 
nanoTime method in the Java System library. If a delay is 
above a certain threshold value, the observed delay is treated 
as a binary 1. Otherwise, it is treated as a binary 0. The 
application reconstructs the transmitted covert message and 
displays it in plain text as it is received. 

B. Storage-CC Implementation Overview 

To implement a storage-based covert channel, we designed 
an application that displays a small advertisement banner at 
the bottom of an arbitrary application. The advertisements are 
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fetched from our remote server, of which there are  choices 
of advertisements. 

The application leaks information by requesting a specific 
advertisement to represent a specific encoded input token 
(binary values of the contacts list). If  advertisements are 
available, then each request can represent  bits of the data to 
be transmitted. The application fetches advertisements using 
HTTP requests with a POST parameter representing the 
specific ad to be fetched.  

Specific advertisements represent the beginning or end of a 
covert transmission. The server-side of this application 
responds to HTTP requests with the appropriate ad, and 
records the sequence in which ads are requested during a 
covert transmission. The application displays covert data in 
plain text as it is received by decoding the message based on 
the order of advertisement banners requested. 

C. Implementation Challenges 

Several challenges were faced during our research and 
development of covert channels on the Android platform. A 
challenge we faced during our research was that of accessing 
the targeted sensitive data on the Android device. The 
Android operating system uses fine-grained per-application 
permissions that the user must approve at install time (e.g. 
permission to access the network and permission to access the 
contacts list). Applications that have both network access and 
access to sensitive data such as the contacts list raise 
suspicions from the user who must approve these permissions, 
and from security software that identifies over-privileged 
applications [11]. Exasperating this problem is the fact that 
applications on the Android platform are executed in isolated 
runtime environments. The Android operating system is a 
Linux-based OS where each application is run as a distinct 
user and group, which creates a sandboxed environment that 
separates each application from one another and from the 
underlying system. This prevents using the approach of 
dividing the attack into two separate applications - one for the 
data access and one for the network connectivity - because 
communication between the two is not possible. 

A second challenge faced during our research involved the 
network implementation of our covert channels. The Android 
platform (and the Java programming language in general 
without accessing native libraries) does not allow an 
application to have access to raw sockets, so techniques used 
in traditional computing environments that alter the flow of 
packets in order to implement covert channels [3, 5, 6, 10] are 
not possible. Network programming on Android is limited to 
high-level socket communications (transport layer), and does 
not provide the ability for programmers to access lower levels 
of the network stack. The presence of low level socket access 
would represent a major security risk, as these types of 
operations require root access on the device. 
 A third challenge faced during our research was the 
difficulty of implementing our timing-based covert channel 
over the cellular network. The mobile phone network 
introduced a large amount of jitter and highly varying quality 
that caused synchronization and reliability issues in our 
implementation. We also discovered that very few UDP 

packets complete the trip from source to destination without 
being dropped. 

D. Solutions of Challenges 

To overcome the challenge of accessing sensitive data on the 
Android platform, we relied on the method of on-device 
covert storage channels discussed by Schlegel et al. [11]. 
Schlegel showed that the protection mechanisms on the 
Android platform that prevent unauthorized application-to-
application communication can be subverted. The 
implementation puts in place malware in the form of two 
cooperating applications: one with permission to access 
sensitive data, and the other with network access. On-device 
covert channels were used to communicate data between the 
two applications. These channels rely primarily on changing a 
global setting that both applications had access to, such as the 
device's volume or screen brightness. 

Based on Schlegel's findings, we assume that our covert 
channel applications have access to the desired sensitive data 
on the target device while also having full network access, as 
would be the case for a real-world application. To overcome 
the challenge of the lack of low level socket access, we 
implemented custom TCP and UDP protocols to carry our 
legitimate application traffic. We encode a covert timing 
channel within the legitimate channel by altering the delays 
between protocol messages. We insert enough of a delay 
between protocol messages that the TCP stream is flushed 
between each message. We also disable TCP's Nagle 
algorithm, a congestion control technique used by TCP to 
combine multiple messages into a single packet to reduce the 
number of packets sent over the network. This allows us to 
have finer grained control over the timing of TCP messages. 
 The traffic quality challenges presented by the cellular 
network have forced us to use the TCP protocol only, since 
UDP traffic often does not make it through the network. We 
also used higher values for inter-message delays than would 
be necessary if access to raw sockets existed. This resulted in 
a lower bandwidth covert channel than one would normally be 
able to implement. 

E. Experimental Setup 

For our mobile platform, we used a Motorola Droid X 
Smartphone. This platform was chosen because it is a fairly 
common smartphone, with widespread use in the real-world. 
The Droid X phone is powered by a 1GHz Texas Instruments 
Open Multimedia Application Platform (OMAP) 3630 
processor chip, which uses an ARM Cortex-A8 processing 
unit. The unit has 512MB of random access memory (RAM). 
The Droid X used during our experiments was running 
Android version 2.3.3 (codenamed Gingerbread) as its 
operating system. This was the most current operating system 
for this device as of the time of our research. For our 
experiments, all other running processes on the phone were 
killed other than our covert channel application and required 
system processes. 

For our server platform, which served as the 
communications endpoint for both overt and covert traffic 
generated by our applications, we used a system powered by 
an Intel Core i7 processor with 12GB of RAM running 
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Windows 7 64-bit. The Droid X used during our experiments 
was connected to the Internet via Verizon's 3G service in 
Chattanooga, TN. Verizon's network type in this location is a 
Code Division Multiple Access (CDMA) Evolution-Data 
Optimized (EV-DO) revision A network. Our typical signal 
strength during testing was -69 dBm, and all tests were 
performed from the same location.  As a reference, signal 
strength of -60 dBm represents a nearly perfect connection, 
while signal strength of -112 dBm represents a nearly 
unusable connection. 

We performed several tests to establish a measure of 
network quality. We used the SpeedTest.net Android 
application by OOKLA in order to get a general idea of the 
quality of the Droid X’s Internet connection. This application 
tests the uplink and downlink speed to a geographically close 
server. We used the application to test connectivity to a server 
in McMinnville, TN hosted by Ben Lomand Telephone 
Systems. We performed multiple tests on weekday evenings 
(approximately 7:00pm local time) to capture network 
conditions during a time of relatively heavy network load. The 
speed tests provided fairly consistent results: approximately 
2.0 Mbps downlink speed; approximately 0.7 Mbps uplink 
speed; and a ping time of approximately 200 ms. 

For our covert timing channel, we implemented a basic 
binary channel (two input symbols: binary 0 and binary 1). 
We designed two Android applications: a testing application 
that implements a covert channel without any overt traffic, 
and a real-world application that embeds a covert channel 
within overt traffic. The first was designed only for the 
purpose of determining baseline measurements of the network 
factors that would affect our covert channel, such as the 
correlation between transmitted symbols and observed 
symbols, the jitter introduced by the cellular network, and the 
max throughput capable for a binary channel. The channel is 
implemented by encoding covert traffic using delays between 
1-byte TCP messages. 

In order to establish baseline measurements of jitter, input 
to output symbol accuracy, and max throughput, we used our 
implementation that produces only covert traffic (no overt 
traffic) to perform experiments to test these factors. To test 
jitter and input to output symbol accuracy, we used the 
application to transmit several various input symbols (various 
delays between TCP messages) 350 times each, and measured 
the observed symbol (observed delay) at the server end. These 
tests were all performed under similar network conditions. 
The goal of this experiment was to find a suitable input 
symbol to represent the long delay in our binary input 
alphabet (the short delay is represented by transmitting 
messages with no delay). 
Next, to test channel throughput and accuracy, we transmitted 
a short message ("wadegasior@gmail.com") encoded in 
binary multiple times using various delays and measured the 
rate and accuracy of the message being received at the server-
side. When transmitting string messages using our covert 
timing channel, each character of the string is transmitted 
using eight bits represented by the character's binary ASCII 
value. 

We then performed similar experiments using the second 
application, which embeds a covert channel within an overt 
video stream. These experiments were performed to determine 
the amount of jitter caused by the additional overt traffic on 
our covert channel, the accuracy of our covert channel in a 
real-world scenario, and the maximum bandwidth of our 
covert channel in a real-world scenario. 

Our covert storage channel is implemented using 
advertisement banners fetched from our server and displayed 
within the application on the Android device. We 
experimented with various input-output alphabets (number of 
advertisements available to fetch) and various delays between 
fetches to determine the throughput of this covert channel 
implementation. The size of the input-output alphabet 
determines the amount of information that can be transmitted 
with each advertisement request. In order to transmit  bits 
with each request,  advertisement banners must be available 
to fetch. The delay between advertisement banner fetches is 
governed by what a typical user would expect as a normal rate 
at which an advertisement banner would be updated. For 
example, if our embedded advertisement banner updates once 
every three seconds, it would be a telltale sign that suspicious 
activity is going on. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS  

Our first experiment uses a covert timing channel with no 
overt traffic overhead. We transmitted the delays listed in 
Table 1 350 times each, and analyzed the accuracy at which 
these delays were observed by our server. Our goal was to 
find the smallest input symbol (smallest inter-message delay 
value) that could be clearly distinguished from an input 
symbol of 0 ms. 

TABLE I 
INPUT DELAYS TRANSMITTED DURING BASELINE COVERT TIMING CHANNEL 

Delay (ms) 
0 
25 
50 
75 

100 
150 
200 

 
First, we transmitted TCP messages with an inter-message 
delay of 0 ms (no delay). The delays observed at the server-
side showed a saw tooth pattern, where delays alternated 
between relatively high values (80 to 100 ms) and a value of 0 
ms. Measurements for the first twenty observed delays are 
shown in Figure 3. 

 
Figure 3 Output Symbols Observed with Input Symbol of 0 ms  

(First 20 Observed Delays) 
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The observed saw tooth pattern can be attributed to the 
delayed ACK feature present in the TCP protocol. TCP does 
not immediately respond to every received TCP packet with 
an ACK. TCP waits for a period, expecting that an application 
response might be sent, and the ACK can be included in the 
response to save bandwidth. If a second TCP packet is 
received during this waiting period, TCP immediately 
responds with an ACK. Because our testing application was 
transmitting TCP messages consisting only of a single packet, 
the server waited to respond with an ACK after every other 
packet causing this result. We verified this behavior by 
analyzing the traffic with Wireshark. Our Android application 
sends two packets, and then waits until it receives an ACK 
before sending more, and thus every other delay is a high 
value. Taking this into consideration, we redesigned our 
server application by having it respond to every TCP message 
received with a short response. This effectively sends an 
immediate ACK for every message received. Repeating the 
experiment with this change yielded the observed values 
shown in Figure 4, again for the first twenty delays observed. 

 
Figure 4 Output Symbols Observed with Input Symbol of 0 ms, 
with forced ACK after each message (First 20 Observed Delays) 

 
With this modification, we were able to obtain a much more 

consistent input symbol to output symbol relationship. For our 
sample size of 350 delays, we observed a mean delay of 88 
ms, a range from 60 to 127 ms, and a standard deviation 
(jitter) of 10 ms. A frequency of observed symbols is shown 
in Figure 5. 

 
Figure 5 Output Symbols Observed by Server with Input Symbol of 0 ms  

(350 samples) 

After determining possible input symbol values for 
representing a binary 1 for our covert channel, we tested the 
accuracy and overall throughput of channels implemented 
using these input symbols. Again, these channels were 
implemented without the overhead of overt traffic. For each 
combination of input values, a threshold value was selected 
based on the results of the previous experiments. If a delay is 
observed below the threshold value, it is treated as a binary 0. 
If a delay is observed that is greater than the threshold value, 
it is treated as a binary 1. 

For each combination of input and threshold value, we 
measured the accuracy and throughput of a covert channel by 

transmitting the string value "wadegasior@gmail.com" 
encoded to 7-bit ASCII. The results are shown in Table II. 
Each combination was tested five times, and the average 
accuracy and throughput recorded.  

TABLE II 
BASELINE ACCURACY AND THROUGHPUT EXPERIMENT RESULTS  
Input 

Symbol for 
Binary 0 

(ms) 

Input 
Symbol 

for 
Binary 
1 (ms) 

Threshold 
Value 
(ms) 

Throughput 
(bps) 

Accuracy 
(%) 

0 100 95 9.3 81.7 
0 150 110 7.8 99.2 
0 200 130 7.2 100 

 
These results demonstrated an expected correlation between 

delay length, accuracy and throughput. Using larger delays for 
the binary 1 input symbol (with a larger associated threshold 
value) results in more accurate transmissions at the cost of 
throughput. 

IV. CONCLUSION 

In this work, we implemented network covert channels on 
mobile devices that allow data to be leaked from the device 
via its network connection in a manner that is very difficult to 
detect. We proved this by implementing both timing-based 
and storage-based network covert channels on an Android-
powered smartphone, and using these channels to covertly 
transfer information from the phone to an external server.  
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