Association of Perceptual-Response Training with Injury Incidence among Secondary School Athletes

Kyle S Mether, Zoë A Perrin, Samuel L Emberton

THE UNIVERSITY of TENNESSEE

Introduction

- Performance and injury avoidance rely on speed and accuracy¹
 - Detection and remediation of perceptual-motor deficits essential
- Training and injury prevention remain focused on physical factors²
 - Potential for training-induced neural adaptation is promising
- Virtual reality (VR) metrics may reflect neural processing efficiency³
 - Response time viewed as duration of perceptual-cognitive processing

Introduction

- Concussion history linked to subsequent musculoskeletal injury⁴
 - Diffuse axon injury may disrupt brain functional connectivity
 - Impaired neural processing efficiency may elevate injury risk
 - □ Asymptomatic post-concussion effects can persist for months or years
- Prediction models typically quantify risk without any intervention⁵
 - Dynamic models assess change in risk status over surveillance period
 - □ Inferring causation from observational data known to be problematic
 - Analysis of potential confounding factors essential

Introduction

- VR perceptual-response training may yield valuable adaptations⁶
 - Perceptual detection and interpretation of visual stimuli
 - Cognitive conflict resolution and decision making
 - Programming, execution, and adjustments of motor responses
- Potential benefits of improved integration of brain processes:⁶
 - Sport-related injury avoidance
 - Sport performance capabilities

Study Purpose

To assess the potential value of virtual reality for assessment and training of perceptual-response efficiency, including the analysis of a possible relationship to injury occurrences among trained and untrained female high school soccer athletes.

Methods

VR Perceptual-Response Tests*

- Baseline (Pre-participation) Assessment
 - Assignment based on low vs high performance
 - \square N=50 (Training n=25 & Control n=25)
- □ Follow-up (Post-Training) Assessment
 - 8 cases lost between baseline and follow-up
 - \square N=42 (Training n=19 & Control n=23)
- Injury Documentation
 - Core or lower extremity injury (CLEI)
 - Acute strain or sprain that interrupted practice or game participation and received treatment
 - Concussion

Baseline n=50

```
□ Age: 15.2 <u>+</u> 1.2 years
```

- □ Height: 164.6 <u>+</u> 5.6 cm
- □ Weight: 56.9 <u>+</u> 6.7 kg

- □ Follow-Up n=42
- □ Age: 15.1 <u>+</u> 1.2 years
- ❑ Height: 165.1 <u>+</u> 5.6 cm
- □ Weight: 57.6 <u>+</u> 7.0 kg

* 3 Private HS Programs Exclusionary Criterion: Current Injury

Baseline and Follow-Up Assessments

- Visual stimuli (white circles or white rings) move in right or left directions across display
- Instruction: "Move in same direction as circles; Move in opposite direction of rings"
- Contact virtual response targets with either right and left hand controllers
- Auditory tone and hand controller vibration upon virtual target contact
- □ 40 trials (20 congruent circles; 20 incongruent rings)

Operational Definitions

* 6° Angular Rotation (Eyes and Neck) or 10 cm Linear Translation (Arm and Step)

Rate Correct per Second = # Correct Responses / Sum of <u>Response Time</u> for 40 Trials Arm <u>Perceptual Latency</u> Intra-Individual Variability = Standard Deviation of 40 Trials

Methods: VR Metrics

- Speed-Accuracy Composite Metric: Rate Correct Score (RCS)
 - □ Training vs. Control condition based on Arm RCS-RT median
 - \Box < 0.800 assigned to training program
- 40-Trial Mean and Trial-to-Trial Intra-Individual Variability (IIV)
- Perceptual Latency (PL): Neck, Arm, Step
- □ Response Time (RT): Neck, Arm, Step

VR Perceptual Response Training

Training program: 2 sets of 20 repetitions per session

Horizontally moving circles: circles (congruent) or rings (incongruent)
 Peripheral response targets located outside field of view

□ Progression: \ge 90% correct responses (18/20)

- Levels 1-6
 - Initial stimulus location
 - Addition of visual distractors
 - Movement speed

□ Training program availability □ 21-52 days after first practice (31-day period) □ ≥ 3 training sessions completed by 19 players □ Median number of sessions = 5 (Range: 3 - 13) □ Median difficulty level achieved = 5 (Range: 3 - 6)

High School Girls' Soccer VR Training Effect Rate Correct per Second (RCS) of Total Response Time*

Group Assignments Based on RCS Median (≥ 0.800 vs. < 0.800)

Group	Pre	Post
No Training (n=23)	0.938	0.977
Training (n=19)	0.686	0.877

Pre-Training Cut Point: Median = 0.800

Effect	Р	η_p^2
Group X Session	>.001	.422
Session Difference	>.001	.628
Group Difference	>.001	.420

Number Correct of 40 Trials / Sum of 40 RT Values

Error bars: 95% Cl

High School Girls' Soccer VR Training Effect Arm Perceptual Latency Intra-Individual Variability

Group	Pre	Post
Training (n=19)	0.350	0.147
No Training (n=23)	0.162	0.158

Effect	Р	η_p^2
Group X Session	<.001	.338
Session Difference	<.001	.355
Group Difference	.002	.210

Error bars: 95% Cl

Injury Documentation

Injury Occurrences:

- Concussion: 4 Ankle: 2 Low Back: 2 Knee: 1 Hip/Groin: 1 Total: 10*
- * 2 players sustained both Concussion and CLEI

Surveillance:

Phase 1: 1st Practice to Follow-Up 3 Concussion + 2 CLEI Phase 2: Follow-Up to Season End 1 Concussion + 4 CLEI

Period (Days)	Median	Range
BL – First Practice	26	25-26
Phase 1: BL — Injury	42	33-85
First Practice – FU	57	56-69
Phase 2: FU — Injury	27	6-34
First Practice – Season End	102	88-102
Training End — Season End	43	36-50

BL: Baseline FU: Follow-Up

Arm Perceptual Latency Intra-Individual Variability Injury versus No Injury (Concussion or Core/LE Injury) <u>Phase 1: 1st Practice to Follow-Up VR Testing</u>

Arm Perceptual Latency Intra-Individual Variability Injury versus No Injury (Concussion or Core/LE Injury) <u>Phase 2</u>: Follow-Up VR Testing to Season End

High School Girls' Soccer VR Training Effect Arm Perceptual Latency Intra-Individual Variability (≥ 0.143 versus < 0.143)

Cox Regression 2-Factor Prediction Model for Injury Hazard

Days to Concussion or Core or Lower Extremity Injury

Univariable Cox Regression Analyses

Binary Classification	Cut Point	Р	Hazard Ratio (95% CI)
High Game Exposure	≥ 19	.137	3.02 (0.72, 12.65)
History of CLEI Prior 12 Mo	Yes/No	.079	4.36 (0.88, 21.62)
Lifetime History of Concussion	Yes/No	.032	5.54 (1.12, 27.51)
Arm Perceptual Latency IIV	≥ 0.143	.031	10.09 (1.24, 82.08)

Multivariable Backward-Stepwise Cox Regression* 2-Factor Model $\chi^2(2)=15.55$; P<.001

Binary Classification	Cut Point	Р	Adj. Hazard Ratio (95% Cl)
Lifetime History of Concussion	Yes/No	.008	8.84 (1.74, 44.77)
Arm Perceptual Latency IIV	≥ 0.143	.011	15.43 (1.86, 127.99)

* High Game Exposure modeled both as count of Games Played (0-22) and binary factor (≥ 19) in separate analyses (both dropped from model in first step).

Baseline (Pre-Participation) versus Follow-Up (Post-Training)

Baseline: Open Circles and Dashed Line of Best Fit Follow-Up: Filled Circles and Solid Line of Best Fit

Arm Perceptual Latency IIV: < 0.143 versus ≥ 0.143

(Pre-Injury Value for 8 Injured Cases and Follow-Up Value for 34 Non-Injured Cases)

Trained cases marked with asterisk (2/19 lnjured); Untrained cases underlined (6/23) lnjured

Discussion

- Arm PL-IIV (initial movement inconsistency) a key metric
 Correlated with RCS-RT, but provided better injury prediction
 VR training produced substantial improvement in both metrics
 BL Arm PL-IIV > 0.143 95% (18/19) to FU Arm PL-IIV > 0.143 32% (7/19)
 BL Arm RCS-RT < 0.800 100% (19/19) to FU Arm RCS-RT < 0.800 26% (5/19)
- Lifetime Concussion History also a strong injury predictor⁴
 Concussion History HR=8.84; Arm PL-IIV HR=15.53

Discussion

- Although the findings appear strong, limitations included:
 - No randomized group assignment (possible confounding effects)
 - Relatively small cohort (n=50) with loss of 8 participants (n=42)
 - Inconsistent number of training sessions completed (Range: 3-13)
 - □ Relatively low injury incidence of 19% (8/42)

Clinical Relevance

- Behavioral IIV inversely related to brain signal variability⁶
- Both PL-IIV and RCS-RT may be indicators of neural efficiency
- 2-Phase analysis permitted assessment of change in risk status⁷
 - Counterfactual estimation of injury likelihood without VR training
- VR appears to have unique value for reduction of injury risk⁸
 - Relatively low training volume may provide substantial benefit

References

- 1. Kelly, AC, Uddin, LQ, Biswal, BB, et al. Competition between functional brain networks mediates behavioral variability. *Neuroimage* 2008;39:527–537.
- 2. Walton, CC, Keegan, RJ, Martin, M, et al. The potential role for cognitive training in sport: More research needed. *Front. Psychol.* 2018;9:1121.
- 3. Wilkerson GB, Fleming LR, Adams VP, et al. Assessment and Training of Perceptual-Motor Function: Performance of College Wrestlers Associated with History of Concussion. *Brain Sci.* 2024;14(1):68.
- 4. McPherson AL, Nagai T, Webster KE, Hewett TE. Musculoskeletal injury risk after sport-related concussion: a systematic review and meta-analysis. *Am J Sports Med*. 2019;47(7):1754-1762.
- 5. Prosperi M, Guo Y, Sperrin M, et al. Causal inference and counterfactual prediction in machine learning for actionable healthcare. *Nat Mach Intell*. 2020;2(7):369-375.
- 6. MacDonald SW, Nyberg L, Bäckman L. Intra-individual variability in behavior: links to brain structure, neurotransmission and neuronal activity. *Trends Neurosci*. 2006;29(8):474-480.
- 7. Nielsen RO, Bertelsen ML, Ramskov D, et al. Time-to-event analysis for sports injury research part 1: time-varying exposures. *Br J Sports Med*. 2019;53(1):61-68.
- 8. Bullock GS, Hughes T, Arundale AH, et al. Black Box Prediction Methods in Sports Medicine Deserve a Red Card for Reckless Practice: A Change of Tactics is Needed to Advance Athlete Care. *Sports Med.* 2022;52(8):1729-1735.